≡ Menu

Passive Semi-Closed Rebreathers

Semi-closed rebreathers are a form of mixed-gas rebreather, of which there are two fundamentally different categories of semi-closed rebreathers: active-addition, and passive-addition. By far, the most common are the active-addition systems. The supply gas in these units is usually injected into the breathing loop at a constant-mass rate. In other words, regardless of the depth, a constant number of molecules of gas are injected into the loop in a given period of time. The rate of injection in such systems must be adjusted according to the fraction of oxygen in the supply gas, such that the rate of oxygen addition to the breathing loop meets or exceeds the rate at which the diver consumes oxygen in the breathing loop.

These types of Rebreather have many advantages and are in popular use amongs many divers around the world today. However, they are not without their disadvantages. One factor that needs to be considered when diving these units is the fact that the part of the supply gas that is not oxygen (usually nitrogen or helium, or both) is also added to the breathing loop at a constant rate. Because the diver’s body does not consume this “other” gas, it continues to build up in the breathing-loop. To prevent the obvious consequence of over-expansion, this excess gas must be periodically vented out of the breathing loop. In an ideal world, only the non-oxygen component of the breathing gas would be vented from the loop, saving the oxygen for consumption by the diver. However, because the gas in the breathing loop is more-or-less homogeneously mixed, a certain fraction of the vented gas is wasted oxygen.

Another problem with active-addition semi-closed rebreathers is that the concentration of oxygen in the breathing loop is variable. First of all, the oxygen fraction in the breathing loop necessarily “lags” somewhat behind the oxygen fraction in the supply gas. The reason for this is that the diver’s body is “pulling” oxygen out of the breathing gas much faster than it is “pulling” out the other constituents of the supply gas. Also, the oxygen is being added to the loop at a constant rate, but the rate at which the diver’s body consumes the oxygen varies according to the diver’s workload. A given diver’s metabolic oxygen consumption rate can vary by a factor of 6 or more in normal conditions, and as much as 10-fold in extreme conditions, depending on the level of exertion. These fluctuations affect the magnitude of the “lag” between the fraction of oxygen in the supply gas, and the fraction of oxygen in the breathing gas. To minimize the risk of hypoxia, the concentration of oxygen in the supply gas and the rate at which the supply gas is injected into the breathing loop must be high enough to accommodate the needs of a diver during heavy exertion. The higher the oxygen fraction in the supply gas, the more restrictive the depth limitation due to the risk of oxygen toxicity during periods of low workload. Furthermore, the greater the gas injection rate, the less time a given volume of supply gas will last (i.e., the less efficiently the supply gas is used). Thus, because of the (usually unpredictable) variability of oxygen needs by the diver during the course of a dive, and the inability of constant-mass flow semi-closed rebreathers to compensate for this variability, active-addition semi-closed rebreathers are inherently inefficient compared to other kinds of rebreathers.

An alternative approach to semi-closed rebreather design is some sort of passive-addition system. Passive-addition designs attempt to adjust the rate at which the supply gas is added to the breathing loop to match more closely the metabolic needs of the diver. The simplest way to make this adjustment in real-time is to “key” the gas injection rate to the diver’s breathing rate. In most circumstances, breathing rate, or respiratory minute volume (RMV), will be directly proportional to metabolic oxygen consumption rate. Thus, most passive-addition semi-closed rebreathers inject supply gas into the breathing loop at a rate determined by the diver’s RMV: more gas is injected during periods of high RMV, and less gas is injected during periods of low RMV. While this approach reduces the problem of large fluctuations in the oxygen content of the breathing gas at different workloads, there is still the need to periodically vent excess gas, thereby reducing gas efficiency.